Absolute Zircon Ages for Pre-Necatrian Events and a Proposed Age for the Near Side Megabasin

Lunar Science Forum

July 20, 2010

Charles J. Byrne

Image Again charles.byrne@verizon.net www.imageagain.com

A Multi-disciplinary Study

- Lunar Samples from Apollo (14, 17)
- Mineralogy (SHRIMP ion probe ages)
- Impact dynamics (shock and ejecta)
- Topography (shape of the Moon)

Samples from Apollo 14 and 17

Jack Schmitt takes a "chip off the old block"

Apollo 14 and 17 Landing Sites

Apollo 17: Taurus-Litrow v. Serenitatis Rim

Apollo 14: Fra Mauro form. Imbrium ejecta

Apollo 17 Sample # 73217

'Mineralogy: Ion Probe Analysis

- SHRIMP II: Sensitive High Resolution Ion Micro Probe
- < 50 μ resolution, 3 X 10⁴ mass resolution

Zircons in Breccia

- The breccia samples have been shocked by impacts as they were ejected.
- They have aggregates of minerals, re-crystalized from melts or partial melts.
- Within them are crystals of the highly refractory zircon, that survives shocks.
- The age of ancient events is found from U/Pb decay of trace contaminants.

'Ages of Most Sample Minerals

- Rocks from Imbrian ejecta have been aged at 3.77 Ga, the time of that impact.
- Rocks from the Serenitatis rim have been aged at 3.89 Ga, slightly older than Imbrium, in the Nectarian period.
- Within those rocks, zircons were found to have been formed much earlier.

'Zircon in Thin Sample, 73215

Nemchin et al., 2009

Ages of Apollo Zircon Grains

Apollo 14 Peaks:

4.34 Ga

4.2 Ga

4.16 Ga

4.0 Ga

Apollo 17 Peak:

4.34 Ga

Nemchin et al., 2008

Impact Dynamics

Maxwell Z Model of Ejecta

Croft, 1981

· Where Does Ejecta Come From?

Where were these Zircons last?

- 4.34 Ga zircons dominate samples from widely separated near side locations
- Deep from Serenitatis, shallow from Imbrium
- Implication: a pervasive near side event
- Younger zircons are also from the shallow Imbrium pre-impact target
- Thrown there from earlier impacts (eg. Insularum)?

Evidence from Topography:

Clues to the pervasive near side event in the digital elevation map

What Caused this Shape?

- The Moon has a depression of more than 1 km over most of its near side
- The far side is elevated, rising to a mound of about 5 km
- Gravity data: the crust is thinner on the near side and thicker on the far side.
- A giant near side impact, throwing its ejecta to the far side, may have shaped the Moon.

Model of the Near Side Megabasin

The NSM, before isometric compensation

The Two Giant Basins, after Compensation

Model of the Near Side Megabasin and the South Pole-Aitken Basin after compensation

Current topography

The Source of the 4.34 Ga Zircons

- Simulations show that giant basins cause melt columns beneath them
- A melt column in a thinned crust would have admixture from the incompatible layer
- Zircons there would have their ages reset
- The 4.34 Ga zircons could come from the remelted, and mixed crust of the NSM

Summary

Multiple disciplines converge to suggest an answer to two questions:

- What early cataclysmic event produced zircon ages of 4.34 Ga?
- What is the age of the Near Side Megabasin?

The Near Side Megabasin reset zircon grains at 4.34 Ga!

Questions?

The Near Side Megabasin

Latitude: 08.5° N Eccentricity 0.42

Longitude 22.0° E Angle 1 48°

Major axis radius 3320 km Launch ² 50°

Minor axis radius 3013 km

Scale depth 4000 m

Mare level -1700 m

¹ Angle of major axis, counter-clockwise from North

² Launch angle, measured from horizontal

'Radial Profile of the Near Side Megabasin

'The South Pole - Aitken Basin

Latitude: 54.2 ° S ¹ Eccentricity 0.69 ¹

Longitude 168.7 ° W ¹ Angle 7.5 ° ¹

Major axis radius 1440 km Launch 42 °

Minor axis radius 1042 km

Scale depth 6800 m

Mare level -4500 m (mare plus ejecta)

¹ Garrick-Bethell, 2004, LPSC XXXV Abstract #1515

Additonal Investigation Needed

- Photo-geology study (rim, scarp, rings, ridges)
- Improved elevation data and photography
- Analysis of lunar Moho, centered on new basin
- Addition of smaller basins to the model
- Implications to early lunar history
- Simulations of ejecta velocity and launch angle
- Basin modeling (ellipse, spherical target)

Thorium Concentration Pattern

Element distributions can be explained by the admixture of material from the incompatible layer into the thinned crust below the Near Side Megabasin

Titanium

Iron

